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Abstract

A rigorous solution is presented for the case of sti�ened anisotropic shells with general imperfections under com-

bined axial compression, internal or external pressure and torsion. Donnell type equations are used to describe the

behavior of the layered composite shell. The sti�eners are represented by smeared theory and for the discrete end rings,

CohenÕs ring equations are used. The circumferential dependence is eliminated by a truncated Fourier series. The re-

sulting 2-point boundary value problem is solved numerically via the ``parallel shooting method''.

The nonlinear collapse behavior is studied using di�erent combinations of axisymmetric and asymmetric imper-

fections. Comparison with Koiter type imperfection predictions display the range of validity of the asymptotic results.

It is shown that besides initial geometric imperfections also nonuniform harmonically varying boundary conditions

can have severe degrading e�ect on the load carrying capacity of anisotropic shells. Ó 2000 Elsevier Science Ltd. All

rights reserved.
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1. Introduction

The use of large general-purpose computer programs for the analysis of di�erent types of structures is by
now well accepted. These codes have been used successfully to calculate the stress distributions and de-
formation patterns for very complicated structural con®gurations with the accuracy demanded in engi-
neering applications under all kind of loading conditions. However, if the structure is buckling sensitive,
then even, in 1998, one will often encounter great di�culties in making an accurate and reliable prediction
of the critical buckling load.

The perplexing behavior of axially compressed thin-walled cylindrical shells has been a major concern
for structural engineers for over 75 years and it represents one of the best known examples of the very
complicated stability behavior which can occur with thin-walled structures. The whole problem is well il-
lustrated in Fig. 1 (Weller and Singer, 1971), where some of the available experimental results for axially
compressed stringer sti�ened shells are plotted as a function of BatdorfÕs Z�� L2=Rt

�������������
1ÿ m2
p

� parameter.
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Notice that the experimental buckling loads are normalized by the ``classical'' linear buckling loads,
computed using membrane prebuckling and SS-3 (Nx � v � w � Mx � 0) boundary conditions.

Trying to ®nd an explanation for the wide experimental scatter and for the poor correlation between the
theoretical predictions based on a linearized small de¯ection theory with SS-3 boundary conditions and the
experimental results has occupied some of the most eminent scientists of this century. Thanks to the pi-
oneering work by Koiter (1945, 1967, 1963) and the Harvard group under Budiansky and Hutchinson
(1964), Budiansky (1965) and Hutchinson and Amazigo (1967) initial geometric imperfections have been
accepted as one of the principal factors causing the wide scatter of experimental buckling loads shown in
Fig. 1. In addition, Ho� (1961) and Ohira (1961) using membrane prebuckling analysis have shown that for
isotropic shells di�erent in-plane boundary conditions can also cause large variations in the critical buckling
loads. Thus, for instance, for the so-called weak boundary condition where no tangential stresses are ex-
erted on the ends of the shell, they found that the classical buckling load is reduced by a factor of two.
Almroth (1965) using a rigorous nonlinear prebuckling analysis essentially con®rmed these results. In a
later paper, Ho� and Soong (1969) showed that for isotropic shells relaxing the tangential restraint along a
small fraction of the edge has an almost equally detrimental e�ect. Recently, Singer (1979, 1983) have
developed an experimental vibration correlation technique, which makes it possible to estimate the degree
of elastic support present in a particular test setup.

Despite all these theoretical and experimental results the shell design manuals in use at the present time
(Anonymous, 1968, 1988) adhere to the so-called ``lower bound design philosophy'' and as such recom-
mend the use of the following buckling formula:

Pa 6
c

FS
Pc; �1�

where Pa is the allowable applied load, Pc is the critical buckling load of the perfect structure, c is the so-
called ``knockdown factor'' and FS is a factor of safety. The empirical knockdown factor, c is so chosen
that when it is multiplied with the critical buckling load of the perfect structure a ``lower bound'' to all
existing experimental data are obtained.

It has long been felt that while for many cases the lower bound design philosophy provides a safe and
reliable buckling load prediction, it penalizes innovative shell designs because of the poor experimental

Fig. 1. Comparison of theory and experiment for stringer sti�ened shells (Weller and Singer, 1971).

6892 J. Arbocz / International Journal of Solids and Structures 37 (2000) 6891±6915



results obtained with shells produced and tested under completely di�erent circumstances. It has been
hoped that with the large scale introduction of computer codes with advanced nonlinear capabilities an
alternate design procedure could be developed which would account for the inherent uncertainties in a more
rational manner.

As a step towards this goal, Arbocz (1984) published the results of an extensive numerical study of the
well characterized stringer sti�ened shell AS-2, which has been tested at Caltech in 1970 (Singer et al., 1971).
Using an early ®nite di�erence version of the well-known nonlinear shell code STAGS (Almroth et al.,
1971a), the complete shell was modeled. The measured initial imperfections were ®tted by a bivariate cubic
spline ®t. This model was then used to compute the ®rst derivatives of the measured initial imperfection
with respect to x and y at all nodal points in a user written subroutine. Employing C-4 �u � u0; v �
w � w;x� 0� boundary conditions, the nonlinear solution then located the limit point of the prebuckling
states. The calculated collapse load of qs � 0:8563 is unexpectedly high since the shell AS-2 buckled at
q exp � 0:705, whereby both buckling loads have been normalized by )320.8 N/cm, the buckling load of the
perfect shell using membrane prebuckling and the same C-4 boundary conditions.

In looking for an explanation, a comparison of the calculated prebuckling deformation for C-4
boundary condition (see Fig. 2) with the experimentally measured prebuckling deformation (see Fig. 3) is
helpful. Obviously, the two deformation patterns are strikingly di�erent. As the measured initial imper-
fections are modeled quite accurately by the bivariate cubic spline ®t used, therefore the answer must be
sought in a possible di�erence between the C-4 boundary conditions used with the numerical calculations
and the actual boundary conditions present at the experimental test setup. This statement is reinforced by
the results of the ¯atness survey of one of the end-rings used in the test setup of shell AS-2 shown in Fig. 4.
It is obvious that in this case, the condition u � u0 used in the C-4 boundary conditions should be replaced

Fig. 2. Calculated prebuckling growth of the stringer sti�ened shell AS-2 at qs � 0:8563 (Arbocz, 1984) ± boundary conditions: u � u0,

v � w � w,x � 0.
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Fig. 4. Measured ¯atness of the Caltech end-ring (in mm).

Fig. 3. Measured prebuckling growth of the stringer sti�ened shell AS-2 at q � 0:629 (Singer et al., 1971).
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by a condition, which allows for a variation of the axial displacement, u in the circumferential direction at
the shell edges.

2. Theoretical analysis

In order to gain an insight into the possible interaction between various types of boundary conditions
and initial geometric imperfections, at ®rst an analytical investigation is carried out. Using the sign con-
vention de®ned in Fig. 5, the Donnell-type imperfect anisotropic shell equations (Tennyson and Mugge-
ridge, 1969) can be written as

LA� �F � ÿ LB� �W � � ÿ�1=R�W ;xxÿ�1=2�LNL�W ;W � 2W �; �2�

LB� �F � � LD� �W � � �1=R�F ;xx�LNL�F ;W � W � � p; �3�

where the linear operators are

LA� � � � A�22� �;xxxxÿ2A�26� �;xxxy ��2A�12 � A�66�� �;xxyy ÿ2A�16� �;xyyy �A�11� �;yyyy ;

LB� � � � B�21� �;xxxx��2B�26 ÿ B�61�� �;xxxy ��B�11 � B�22 ÿ 2B�66�� �;xxyy

� �2B�16 ÿ B�62�� �;xyyy �B�12� �;yyyy ;

LD� � � � D�11� �;xxxx�4D�16� �;xxxy �2�D�12 � 2D�66�� �;xxyy �4D�26� �;xyyy �D�22� �;yyyy ;

�4�

and the nonlinear operator is

LNL�S; T � � S;xx T ;yy ÿ2S;xy T ;xy �S;yy T ;xx ; �5�
where commas in the subscripts denote repeated partial di�erentiation with respect to the independent
variables following the comma. The sti�ness parameters A�11;B

�
11;D

�
11;A

�
12; . . . are de®ned in Arbocz and Hol

Fig. 5. Notation and sign convention.
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(1989). W is the component of the displacement normal to the shell midsurface, W , the initial radial im-
perfection (here both positive inward) and F, the Airy stress function.

2.1. Reduction to an equivalent set of ordinary di�erential equations

If we assume that the initial imperfection is represented as

W �x; y� � tA0�x� � A1�x� cosny � A2�x� sinny; �6�
where A0�x�;A1�x�;A2�x� are known functions of x, then Eqs. (2) and (3) admit separable solutions of the
form

W � t�Wm � Wp � Wt� � tw0�x� � tw1�x�cosny � tw2�x� sinny; �7�

F � �ERt2=c��ÿ�1=2�ky2 ÿ �1=2�p x2 ÿ s x y � f0�x�
� f1�x�cosny � f2�x�cos2ny � f3�x� sinny � f4�x� sin2ny�; �8�

where x � x=R; y � y=R; k is the nondimensional axial load parameter �k � �cR=Et2�N0�; p, the nondimen-
sional external pressure �p � �cR2=Et2�p� and s, the nondimensional torque parameter �s � �cR=Et2�Nxy�,
positive counter-clockwise. The quantities Wm;Wp and Wt are evaluated by enforcing the circumferential
periodicity condition (see Appendix A for details).

Substituting the expressions for W , W and F into the compatibility equation (2), using some trigono-
metric identities, and ®nally equating coe�cients of like terms, results in the following system of ®ve
nonlinear ordinary di�erential equations:

A
�
22f iv

0 ÿ �1=2��t=R�B�21wiv
0 � cw000 ÿ �c=4��t=R�n2

� fw001�w1 � 2A1� � 2w01�w01 � 2A01� � w1�w001 � 2A001�
� w002�w2 � 2A2� � 2w02�w02 � 2A02� � w2�w002 � 2A002�g � 0; �9�

A
�
22f iv

1 ÿ n2�2A
�
12 � A

�
66�f 001 � n4A

�
11f1 ÿ 2nA

�
26f 0003 � 2n3A

�
16f 03 ÿ �1=2��t=R�

� fB�21wiv
1 ÿ n2�B�11 � B

�
22 ÿ 2B

�
66�w001 � n4B

�
12w1 � n�2B

�
26 ÿ B

�
61�w0002 ÿ n3�2B

�
16 ÿ B

�
62�w02g

� cw001 ÿ �c=2��t=R�n2fw000�w1 � 2A1� � w1�w000 � 2A000�g � 0; �10�

A
�
22f iv

2 ÿ 4n2�2A
�
12 � A

�
66�f 002 � 16n4A

�
11f2 ÿ 4nA

�
26f 0004 � 16n3A

�
16f 04 ÿ �c=4��t=R�n2

� fw001�w1 � 2A1� ÿ 2w01�w01 � 2A01� � w1�w001 � 2A001� ÿ �w002�w2 � 2A2�
ÿ 2w02�w02 � 2A02� � w2�w002 � 2A002��g � 0; �11�

A
�
22f iv

3 ÿ n2�2A
�
12 � A

�
66�f 003 � n4A

�
11f3 � 2nA

�
26f 0001 ÿ 2n3A

�
16f 001 ÿ �1=2��t=R�

� fB�21wiv
2 ÿ n2�B�11 � B

�
22 ÿ 2B

�
66�w002 � n4B

�
12w2 ÿ n�2B

�
26 ÿ B

�
61�w0001 � n3�2B

�
16 ÿ B

�
62�w01g

� cw002 ÿ �c=2��t=R�n2fw000�w2 � 2A2� � w2�w000 � 2A000�g � 0; �12�

A
�
22f iv

4 ÿ 4n2�2A
�
12 � A

�
66�f 004 � 16n4A

�
11f4 � 4nA

�
26f 0002 ÿ 16n3A

�
16f 02 ÿ �c=4��t=R�n2

� fw002�w1 � 2A1� ÿ 2w02�w01 � 2A01� � w2�w001 � 2A001� � w001�w2 � 2A2�
ÿ 2w01�w02 � 2A02� � w1�w002 � 2A002�g � 0: �13�
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The nondimensional sti�ness parameters A
�
11;B

�
11;D

�
11; . . . are listed in Arbocz and Hol (1989). Note that Eq.

(9) can be integrated twice yielding

A
�
22f 000 ÿ �1=2��t=R�B�21w000 � cw0 ÿ �c=4��t=R�n2fw1�w1 � 2A1� � w2�w2 � 2A2�g � ~C1x� ~C2; �14�

where c � �������������������
3�1ÿ m2�p

; � �0 � R� �;x and the constants of integration ~C1 and ~C2 are identically equal to zero
because of the periodicity condition (see Appendix A for details).

Substituting in turn the expressions assumed for W , W and F into the equilibrium equation (3)
and applying GalerkinÕs procedure yields the following system of three nonlinear ordinary di�erential
equations

B
�
21f iv

0 � �1=2��t=R�D�11wiv
0 ÿ 2c�R=t�f 000 � 2ck�w000 � A000�

� cn2ff 001 �w1 � A1� � 2f 01�w01 � A01� � f1�w001 � A001�
� f 003 �w2 � A2� � 2f 03�w02 � A02� � f3�w002 � A002�g � 0; �15�

B
�
21f iv

1 ÿ n2�B�11 � B
�
22 ÿ 2B

�
66�f 001 � n4B

�
12f1 � n�2B

�
26 ÿ B

�
61�f 0003 ÿ n3�2B

�
16 ÿ B

�
62�f 03

� �1=2��t=R�fD�11wiv
1 ÿ 2n2�D�12 � 2D

�
66�w001 � n4D

�
22w1 � 4nD

�
16w0002 ÿ 4n3D

�
26w02g

ÿ 2c�R=t�f 001 � 2ck�w001 � A001� ÿ 2cn2p�w1 � A1� ÿ 4cns�w02 � A02� � 2cn2ff 000 �w1 � A1� � f1�w000 � A000�g
� cn2ff 002 �w1 � A1� � 4f 02�w01 � A01� � 4f2�w001 � A001� � f 004 �w2 � A2� � 4f 04�w02 � A02�
� 4f4�w002 � A002�g � 0; �16�

B
�
21f iv

3 ÿ n2�B�11 � B
�
22 ÿ 2B

�
66�f 003 � n4B

�
12f3 ÿ n�2B

�
26 ÿ B

�
61�f 0001 � n3�2B

�
16 ÿ B

�
62�f 01

� �1=2��t=R�fD�11wiv
2 ÿ 2n2�D�12 � 2D

�
66�w002 � n4D

�
22w2 ÿ 4nD

�
16w0001 � 4n3D

�
26w01g

ÿ 2c�R=t�f 003 � 2ck�w002 � A002� ÿ 2cn2p�w2 � A2� � 4cns�w01 � A01� � 2cn2ff 000 �w2 � A2� � f3�w000 � A000�g
� cn2ff 004 �w1 � A1� � 4f 04�w01 � A01� � 4f4�w001 � A001� ÿ �f 002 �w2 � A2� � 4f 02�w02 � A02�
� 4f2�w002 � A002��g � 0: �17�

With the help of Eqs. (9) and (14), one can eliminate the terms f iv
0 and f 000 from the other equations.

Further, in order to be able to use the ``parallel shooting method'' of Keller (1968) for numerical solution of
the above system of nonlinear ordinary di�erential equations, it is necessary to reformulate Eqs. (10)±(17)
so that only a single fourth derivative appears on the left-hand side. This can be accomplished by using Eqs.
(16), (17), (10) and (12) to eliminate the terms wiv

1 , wiv
2 , f iv

1 and f iv
3 from Eqs. (10), (12), (16) and (17), re-

spectively. Finally, some further regrouping makes it possible to write the resulting equations as

f iv
1 � C1f 001 ÿ C2f1 ÿ C3w001 ÿ C4k�w001 � A001� � C5w1

� C201f 0003 ÿ C202f 03 � C203w0002 ÿ C204w02 � C211p�w1 � A1�
� C212s�w02 � A02� � C6�w000�w1 � 2A1� � w1�w000 � 2A000�� ÿ C7w000�w1 � A1�
� C8w0�w1 � A1� ÿ C9�w1�w1 � 2A1� � w2�w2 � 2A2���w1 � A1� ÿ 2C10f1�w000 � A000�
ÿ C10ff 002 �w1 � A1� � 4f 02�w02 � A02� � 4f2�w001 � A001� � f 004 �w2 � A2� � 4f 04�w02 � A02� � 4f4�w002 � A002�g;

�18�

f iv
2 � C11f 002 ÿ C12f2 � C205f 0004 ÿ C206f 04
� C13fw001�w1 � 2A1� ÿ 2w01�w01 � 2A01� � w1�w001 � 2A001�
ÿ �w002�w2 � 2A2� ÿ 2w02�w02 � 2A02� � w2�w002 � 2A002��g; �19�
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f iv
3 � C1f 003 ÿ C2f3 ÿ C3w002 ÿ C4k�w002 � A002� � C5w2

ÿ C201f 0001 � C202f 01 ÿ C203w0001 � C204w01 � C211p�w2 � A2�
ÿ C212s�w01 � A01� � C6�w000�w2 � 2A2� � w2�w000 � 2A000�� ÿ C7w000�w2 � A2�
� C8w0�w2 � A2� ÿ C9�w1�w1 � 2A1� � w2�w2 � 2A2���w2 � A2� ÿ 2C10f3�w000 � A000�
ÿ C10ff 004 �w1 � A1� � 4f 04�w01 � A01� � 4f4�w001 � A001� ÿ �f 002 �w2 � A2� � 4f 02�w02 � A02�
� 4f2�w002 � A002��g; �20�

f iv
4 � C11f 004 ÿ C12f4 ÿ C205f 0002 � C206f 02
� C13fw002�w1 � 2A1� ÿ 2w02�w01 � 2A01� � w2�w001 � 2A001�
� w001�w2 � 2A2� ÿ 2w01�w02 � 2A02� � w1�w002 � 2A002�g; �21�

wiv
0 � C14w000 ÿ C15w0 ÿ C19k�w000 � A000� � C17�w1�w1 � 2A1� � w2�w2 � 2A2��
ÿ C16fw001�w1 � 2A1� � 2w01�w01 � 2A01� � w1�w001 � 2A001�
� w002�w2 � 2A2� � 2w02�w02 � 2A02� � w2�w002 � 2A002�g

ÿ C18ff 001 �w1 � A1� � 2f 01�w01 � A01� � f1�w001 � A001� � f 003 �w2 � A2� � 2f 03�w02 � A02� � f3�w002 � A002�g;
�22�

wiv
1 � C20w001 ÿ C21w1 � C22f 001 ÿ C24f1 ÿ C23k�w001 � A001�
ÿ C209w0002 � C210w02 ÿ C207f 0003 � C208f 03 � C213p�w1 � A1�
� C214s�w02 � A02� ÿ C25�w000�w1 � 2A1� � w1�w000 � 2A000�� ÿ C26w000�w1 � A1�
� C27w0�w1 � A1� ÿ C28�w1�w1 � 2A1� � w2�w2 � 2A2���w1 � A1� ÿ 2C29f1�w000 � A000�
ÿ C29ff 002 �w1 � A1� � 4f 02�w01 � A01� � 4f2�w001 � A001� � f 004 �w2 � A2� � 4f 04�w02 � A02� � 4f4�w002 � A002�g;

�23�

wiv
2 � C20w002 ÿ C21w2 � C22f 003 ÿ C24f3 ÿ C23k�w002 � A002�
� C209w0001 ÿ C210w01 � C207f 0001 ÿ C208f 01 � C213p�w2 � A2�
ÿ C214s�w01 � A01� ÿ C25�w000�w2 � 2A2� � w2�w000 � 2A000�� ÿ C26w000�w2 � A2�
� C27w0�w2 � A2� ÿ C28�w1�w1 � 2A1� � w2�w2 � 2A2���w2 � A2� ÿ 2C29f3�w000 � A000�
ÿ C29ff 004 �w1 � A1� � 4f 04�w01 � A01� � 4f4�w001 � A001� ÿ f 002 �w2 � A2� � 4f 02�w02 � A02�
� 4f2�w002 � A002�g: �24�

The constants C1±C214 are listed in Arbocz et al. (1998). Note that by assuming the axial dependence of the
response to be an unknown function of x, the buckling problem is reduced to the solution of a set of
nonlinear ordinary di�erential equations, which will allow the rigorous enforcing of the speci®ed boundary
conditions.

2.2. Derivation of the reduced boundary conditions

To complete the mathematical formulation of the stability problem, one has to express the speci®ed
boundary conditions in terms of the dependent variables F and W. The derivation of these so-called re-
duced boundary conditions will be illustrated with one of the admissible in-plane boundary conditions,
namely
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u � ub�y� � tu0 � tu1 cosny � tu2 cos2ny � tu3 sinny � tu4 sin2ny: �25�
Eliminating v between the following Donnell type strain±displacement relations

ey � v;y ÿ�1=R�W � �1=2�W ;2y �W ;y W ;y ; �26�

cxy � u;y �v;x�W ;x W ;y �W ;x W ;y �W ;x W ;y ; �27�
one obtains

cxy;y ÿ ey;x � u;yy ��1=R�W ;x�W ;x W ;yy �W ;x W ;yy �W ;x W ;yy : �28�
Introducing the semi-inverted constitutive equations for cxy and ey and specializing the resulting ex-

pressions to the shell edges (at x � 0 and x � L=R) yields

�1=Et�fÿA
�
22F ;xxx�2A

�
26F ;xxy ÿ�A�12 � A

�
66�F ;xyy �A

�
16F ;yyy g � �t=2c�

� fB�21W ;xxx��2B
�
26 ÿ B

�
61�W ;xxy ��B�22 ÿ 2B

�
66�W ;xyy ÿB

�
62W ;yyy g

� ÿ�n2=R2�tfu1 cosny � 4u2 cos2ny � u3 sinny � u4 sin2nyg
� �1=R�W ;x�W ;x W ;yy �W ;x W ;yy �W ;x W ;yy : �29�

Substituting for W , W and F from Eqs. (6)±(8), regrouping and equating coe�cients of like terms yields the
following expressions:

A
�
22f 0000 ÿ �1=2��t=R�B�21w0000 � cw00
ÿ �c=2��t=R�n2fw01�w1 � A1� � w1A01 � w02�w2 � A2� � w2A02g � 0; �30�

A
�
22f 0001 ÿ �A

�
12 � A

�
66�n2f 01 ÿ 2A

�
26nf 003 � A

�
16n3f3 � cw01 ÿ c�t=R�n2�w00�w1 � A1� � w1A00�

ÿ �1=2��t=R�fB�21w0001 ÿ �B
�
22 ÿ 2B

�
66�n2w01 � �2B

�
26 ÿ B

�
61�nw002 � B

�
62n3w2g ÿ cn2u1 � 0; �31�

A
�
22f 0002 ÿ �A

�
12 � A

�
66�4n2f 02 ÿ 4A

�
26nf 004 � 8A

�
16n3f4

ÿ �c=2��t=R�n2fw01�w1 � A1� � w1A01 ÿ �w02�w2 � A2� � w2A02�g ÿ 4cn2u2 � 0; �32�

A
�
22f 0003 ÿ �A

�
12 � A

�
66�n2f 03 � 2A

�
26nf 001 ÿ A

�
16n3f1 � cw02 ÿ c�t=R�n2�w00�w2 � A2� � w2A00�

ÿ �1=2��t=R�fB�21w0002 ÿ �B
�
22 ÿ 2B

�
66�n2w02 ÿ �2B

�
26 ÿ B

�
61�nw001 ÿ B

�
62n3w1� ÿ cn2u3 � 0; �33�

A
�
22f 0004 ÿ �A

�
12 � A

�
66�4n2f 04 � 4A

�
26nf 002 ÿ 8A

�
16n3f2

ÿ �c=2��t=R�n2fw01�w2 � A2� � w1A02 � w02�w1 � A1� � w2A01g ÿ 4cn2u4 � 0: �34�
Notice that the ®rst of these expressions, Eq. (30) does not represent a new (boundary) condition as it can
be obtained from Eq. (14) by a single di�erentiation with respect to x. A complete list of the reduced
boundary conditions and further details of the derivation can be found in Arbocz et al. (1998).

3. Numerical analysis

Due to the highly nonlinear nature of the stability problem represented by Eqs. (18)±(24) and the ap-
propriate boundary conditions a numerical solution is called for. All the known numerical techniques for
the solution of nonlinear equations involve iterative improvements of initial guesses of the solution.
Working with isotropic (Arbocz and Sechler, 1974) and orthotropic (Arbocz and Sechler, 1976) shells, it
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was found that the method known as ``parallel shooting'' (Keller, 1968) works very well for this type of
problems. This method can be best formulated in terms of a ®rst-order vector di�erential equation.

3.1. Formulation of the 2-point boundary value problem

Introducing, as a uni®ed variable, the 28-dimensional vector Y
�

de®ned as follows:

Y1 � f1; Y2 � f2; Y3 � f3; Y4 � f4; Y5 � w0; Y6 � w1; Y7 � w2;

Y8 � f 01; Y9 � f 02; Y10 � f 03; Y11 � f 04; Y12 � w00; Y13 � w01; Y14 � w02;

Y15 � f 001 ; Y16 � f 002 ; Y17 � f 003 ; Y18 � f 004 ; Y19 � w000; Y20 � w001; Y21 � w002;

Y22 � f 0001 ; Y23 � f 0002 ; Y24 � f 0003 ; Y25 � f 0004 ; Y26 � w0000 ; Y27 � w0001 ; Y28 � w0002 ; �35�
and using the SS-4 boundary conditions �u � ub; v � W � Mx � 0� as an illustration, which in terms of the
assumed unknown functions become

u � ub ! f 0001 � B28f 01 ÿ B29f3 � B8w0001 � B30w01 � 2B9A1w00 � c�n2=A
�
22�u1;

f 0002 � 4B31f 02 ÿ 8B32f4 � B9A1w01 ÿ B9A2w02 � 4c�n2=A
�
22�u2;

f 0003 � B28f 03 � B29f1 � B8w0002 � B30w02 � 2B9A2w00 � c�n2=A
�
22�u3;

f 0004 � 4B31f 04 � 8B32f2 � B9A2w01 � B9A1w02 � 4c�n2=A
�
22�u4;

�36�

v � 0! f 001 � B20f1 � B15f 03 � B16w02;

f 002 � 4B24f2 � 2B17f 04;

f 003 � B20f3 ÿ B15f 01 ÿ B16w01;

f 004 � 4B24f4 ÿ 2B17f 02;

�37�

W � 0! w0 � ÿ�Wv � Wp � Wt�;
w1 � w2 � 0;

�38�

Mx � 0! w000 � C41k� C220�s;

w001 � B25f1 � B18f 03 ÿ B19w02;

w002 � B25f3 ÿ B18f 01 � B19w01;

�39�

then the system of Eqs. (18)±(24) can be reduced to the following nonlinear 2-point boundary value
problem

d

dx
Y
�
� f
�
�x; Y

�
; k; p; s� for 0 6 x 6 L=R; �40�

B
�

0Y
�
�x � 0� � a

�
at x � 0;

B
�

1Y
�
�x � L=R� � b

�
at x � L=R;

�41�

where the components of the 14 ´ 28 matrices B
�

0 and B
�

1 depend on the speci®ed boundary conditions at the
shell edges. The constants B1;B2; . . . B32 used in the de®nition of the boundary conditions are listed in
Arbocz et al. (1998).
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The solution of this nonlinear 2-point boundary value problem will locate the limit point of the pre-
buckling states. The applied loading consists of an axial compression, internal or external pressure and
clockwise or counter-clockwise torque. It is assumed to have a uniform spatial distribution and is divided
into a ®xed part and a variable part. The magnitude of the variable part is allowed to vary in proportion to
a load parameter K. By de®nition, the value of the loading parameter K corresponding to the limit point
will be the theoretical buckling load (see also Fig. 6). In Eq. (40), the user can select K to be the critical value
of either the normalized axial load k, or the normalized external pressure p or the normalized torque s.

Considering the results presented in Fig. 6, where the maximum amplitude of the asymmetric component
of the prebuckling deformation is plotted versus the normalized axial load level, one observes that using
load increments, the solution fails to converge close to and beyond the limit point. This situation is un-
satisfactory, especially, since without the appropriate starting values the nonlinear iteration scheme will fail
to converge also at load levels less than the theoretical buckling load. A closer look at the solution curve
presented in Fig. 6 reveals, however, that one should be able to extend the response curve beyond the limit
point by using increments in deformation instead of increments in loading. In this case, the load parameter
K becomes an additional unknown; thus, one needs an extra equation.

Following Kempner (1954), let us de®ne ``unit end-shortening'' as

e � 1

2pRL

Z 2pR

0

�u;xÿqW ;xx �dxdy; �42�

Fig. 6. Variation of jw1 maxj with axial load.
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where

u;x� ex ÿ �1=2�W ;x �W ;x�2W ;x �; �43�

ex � A�11F ;yy �A�12F ;xxÿA�16F ;xy ÿB�11W ;xxÿB�12W ;yy ÿ2B�16W ;xy ; �44�
and q is the load eccentricity measured from the skin midsurface, positive inward. Introducing Eqs. (43) and
(44) into the de®nition of end-shortening, substituting for W , W and F from Eqs. (6)±(8), carrying out the y-
integration, substituting for f 000 from Eq. (14), introducing ec` � t=�cR� and the usual nondimensional pa-
rameters yields after some regrouping

d � e=ec` � A
�
11k� A

�
12p ÿ A

�
16s

�
Z L=R

0

C50h w000 � C51w0 ÿ C52�w1�w1 � 2A1� � w2�w2 � 2A2��
� C53fw00�w00 � 2A00� � �1=2��w01�w01 � 2A01� � w02�w02 � 2A02��gidx; �45�

where the terms involving the integral represent the nonlinear part of the end-shortening dnl. When solving
the boundary value problem of Eq. (40), it is advantageous to solve for dnl by solving the associated initial
value problem, rather than using numerical integration schemes. Here one must solve

d

dx
dnl � C

50
w000 � C51w0 ÿ C52�w1�w1 � 2A1� � w2�w2 � 2A2��

� C53fw00�w00 � 2A00� � �1=2��w01�w01 � 2A01� � w02�w02 � 2A02��g; �46�

dnl�x � 0� � 0;

dnl�x � L=R� � d0;
�47�

where d0 is the speci®ed nonlinear end-shortening and the constants C50;C51; . . . are listed in Arbocz et al.
(1998). This initial value problem, expressed in terms of the uni®ed vector variable Y� , represents the one
additional equation needed when solving the 2-point boundary value problem (Eq. (40)) using increments
in ``end shortening'' instead of increments in loading. A detailed description of the ``parallel shooting
method'' used to solve the 2-point boundary value problem is given in Arbocz and Sechler (1974) when
using increments in axial load Dk and in Arbocz (1975) when using increments in end-shortening Ddnl.

The numerical solution is started at a su�ciently low axial load level k, so that values from the linearized
solution can be used as starting values for the nonlinear iteration scheme. Solutions of the linearized
problem are also obtained by the ``parallel shooting method'' (Arbocz and Sechler, 1973). It is well known
that for the linearized 2-point boundary value problem, NewtonÕs method yields the correct initial value S

�
directly without the need of iterations (Keller, 1968).

The numerical solution of the associated initial value problems and the corresponding variational
equations is done by the library subroutine DEQ from CaltechÕs Willis Booth Computer Center. DEQ uses
the method of Runge±Kutta±Gill to compute starting values for an Adams±Moulton corrector±predictor
scheme. The program includes an option with variable interval size and uses automatic truncation error
control. For the AS-2 shell with an L=R � 1:375, parallel shooting over eight intervals is used. For a general
anisotropic shell, working with eight intervals actually involves the numerical integration of six 812 di-
mensional vector equations and two 420 dimensional vector equations. These high dimensions are due to
the simultaneous integration of the variational equations and the corresponding associated initial value
problems. For proper convergence (say, ®ve digit accuracy) at low load levels, two iterations are su�cient;
however, at load levels close to the limit point 6±12 iterations may be needed to obtain the same level of
convergence. Thus, upon reaching the load level corresponding to point A in Fig. 6, instead of further
increments in the axial load Dk increments in the nonlinear end-shortening Ddnl are used to continue the
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solution. This switch in increments makes it possible to integrate around the limit point at B and get
converged solutions on the decreasing portion of the solution curve.

4. Numerical results

It has been shown by Singer (1983) that di�erent experimental boundary conditions can have a pro-
nounced e�ect on the buckling load of stringer sti�ened shells. To investigate these e�ects numerically,
initially the buckling loads of the stringer sti�ened shell AS-2 (see Fig. 7 for details) for the eight standard
sets of boundary conditions introduced by Ho� (1961) are calculated. The shell dimensions and sti�ener
parameters are summarized in Table 1. Notice that A1 is the cross-sectional area of the stringer, I11, the
moment of inertia of the stringer cross-section about its centroidal axis and It1, the torsion constant of the
stringer cross-section. The de®nition of the standard boundary conditions for axial compression is given in
Table 2. In order to be able to properly assess the e�ect of imperfect boundary imperfections, it is ®rst
necessary to calculate the buckling loads of the corresponding perfect shells.

4.1. Buckling loads of the perfect shell

In order to verify the accuracy of the numerical solutions described earlier in this article, the buckling
loads of the perfect stringer sti�ened shell AS-2 are calculated for the eight standard sets of boundary
conditions given in Table 2. In addition to the buckling loads calculated by the present code called
COLLAPSE, Table 3 also contains results obtained by three other codes as indicated.

These other codes initially calculate the axisymmetric nonlinear prebuckling path of the perfect shell and
then compute the load level at which bifurcation into an asymmetric pattern will occur. It is the userÕs
responsibility to select the range of circumferential wave numbers n for which the search of the lowest
bifurcation buckling load is to be carried out. As a plot of bifurcation buckling load versus circumferential
wave numbers may contain several local minima, it requires some engineering insight to ensure that one has
located the lowest buckling load.

COLLAPSE, on the contrary, calculates the nonlinear response of an imperfect shell for increasing
load levels and determines the limit point of the load carrying capacity. By choosing a vanishingly small
asymmetric imperfection amplitude (say, 0:1� 10ÿ5), the location of the limit point approaches asymp-
totically the bifurcation buckling load of the perfect shell.

The ANILISA of Arbocz and Hol (1990) and the present code COLLAPSE both use Donnell-type
equations, thus it is not surprising that the agreement between the results obtained is excellent, whereby, as
expected, the COLLAPSE results are always slightly lower. The SRA of Cohen (1971) uses Novozhilov

Fig. 7. Geometry of the stringer sti�ened shell AS-2 (Singer et al., 1971).
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type shell equations and it employs a numerical integration scheme similar to the one used by ANILISA
and COLLAPSE. Thus convergence is controlled by the ``error bound'' speci®ed and the program selects
the proper step sizes internally to satisfy it. This eliminates the need for repeated runs with di�erent step
sizes to verify convergence, as is the recommended practice with standard ®nite di�erence or ®nite element
codes. Finally, STAGS-A of Almroth et al. (1971a) uses a 2-dimensional ®nite di�erence based energy
formulation with Marlowe±Fl�ugge (Almroth et al., 1971b) type kinematic relations. The results presented
are based on a full length shell model where only half of the circumference (thus Dh � 180�) is modeled.
Using a mesh consisting of 41 rows and 121 columns results in a nonlinear bifurcation problem with 15 867
degrees of freedom.

Table 3

Normalized perfect shell buckling loads knl
c of the stringer sti�ened shell AS-2 A1=d1t � 0:506;EI11=d1D � 2:690; e1=t � ÿ1:713 (out-

side), GIt1=d1D � 3:402a

Boundary condition Arbocz and Hol (1990) Cohen (1971) COLLAPSE Almroth et al. (1973)

SS-1 1.39755 (n � 10) 1.37924 (n � 10) 1.39748 (n � 10) 1.36731 (n � 10)

SS-2 1.65546* (n � 13) 1.64994* (n � 13) 1.65535*(n � 13) 1.63501*(n � 13)

SS-3 1.42990 (n � 10) 1.41083 (n � 10) 1.42983 (n � 10) 1.39743 (n � 10)

SS-4 1.76862* (n � 14) 1.76406* (n � 14) 1.76849*(n � 14) 1.74440*(n � 14)

C-1 1.61389 (n � 10) 1.59340 (n � 10) 1.61380 (n � 10) 1.57712 (n � 10)

C-2 1.99989* (n � 14) 1.99616* (n � 14) 1.99973*(n � 14) 1.96676*(n � 14)

C-3 1.63503 (n � 10) 1.61485 (n � 10) 1.63494 (n � 10) 1.59864 (n � 10)

C-4 1.99996* (n � 14) 1.99626* (n � 14) 1.99981*(n � 14) 1.96683*(n � 14)

a knl
c � Nx=Nc`, Nc` � ÿEt2=cR � ÿ90:6443 lb=in:; D � Et3=4c2; c � �������������������

3�1ÿ t2�p
, E � 10� 106psi, t � 0:3; � � buckling mode is

antisymmetric with respect to x � L=2.

Table 1

Geometric and material properties of the stringer sti�ened shell AS-2 (Singer et al., 1971)

t � 1:96596� 102, cm (� 0.00774, in.)

L � 13:970, cm (� 5.50, in.)

R � 10:16, cm (� 4.00, in.)

d1 � 8:03402� 10ÿ1, cm (� 0.3163, in.)

e1 � ÿ3:36804� 10ÿ2, cm (�)0.01326, in.)

A1 � 7:98708� 10ÿ3, cm2 (� 0:1238� 10ÿ2, in:2)

I11 � 1:50384� 10ÿ6, cm4 (� 0:3613� 10ÿ7, in:4)

It1 � 4:94483� 10ÿ6, cm4 (� 0:1188� 10ÿ6, in:4)

E � 6:89472� 106, N/cm2 (� 10� 106, psi)

m � 0:3

Table 2

De®nition of the standard boundary conditions for axial compression

SS-1 Nx � ÿN0 Nxy � 0 W � 0 Mx � ÿqN0

SS-2 u � ub Nxy � 0 W � 0 Mx � ÿqN0

SS-3 Nx � ÿN0 v � 0 W � 0 Mx � ÿqN0

SS-4 u � ub v � 0 W � 0 Mx � ÿqN0

C-1 Nx � ÿN0 Nxy � 0 W � 0 W ,x � 0

C-2 u � ub Nxy � 0 W � 0 W ,x � 0

C-3 Nx � ÿN0 v � 0 W � 0 W ,x � 0

C-4 u � ub v � 0 W � 0 W ,x � 0
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Fig. 8 shows the critical buckling mode of the axially compressed stringer sti�ened shell AS-2 calculated
with COLLAPSE using SS-4 boundary conditions. Notice that the axisymmetric part t�Wm � w0�x�� is
plotted ®rst, followed by the asymmetric part t�w1�x� cosny � w2�x� sinny�, where for an orthotropic shell
like AS-2 w2�x� � 0, as there is no torsion-bending coupling. The lowest normalized eigenvalue is closely
approximated by the limit load knl

s � 1:76849 with n � 14 full waves in the circumferential direction (see
also the corresponding results in Table 3). Here the buckling mode shape is anti-symmetric with respect to
the mid-plane of the shell at x � L=2. It is triggered by a small ®ctitious imperfection

W � tn2 sin2p
x
L

cos14
y
R
; n2 � 0:1� 10ÿ5: �48�

The lowest symmetric buckling mode with n � 14 full waves in the circumferential direction is displayed
in Fig. 9. The corresponding eigenvalue is closely approximated by the limit load knl

s � 1:89035. The
asymmetric part of the symmetric buckling mode is triggered by a small ®ctitious imperfection

W � tn2 sin3p
x
L

cos14
y
R
; n2 � 0:1� 10ÿ5: �49�

Fig. 8. Critical buckling mode of the axially compressed stringer sti�ened shell AS-2 at knl
s � 1:76849 (n � 14).
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4.2. Buckling loads of the imperfect shell

Next, using SS-4 boundary conditions the e�ect of shape imperfections is investigated, whereby initially
the modal imperfection given by Eq. (48) is considered. Koiter (1945, 1967, 1963) has shown that the
buckling load of the imperfect shell ks (the maximum load the structure can support prior to buckling) is
related to the imperfection amplitude n2 and the second postbuckling coe�cient ``b'' by

�1ÿ qs�3=2 � �3=2�
���������
ÿ3b
p

qs n2

�� ��; b < 0; �50�

where qs � ks=k
nl
c . This equation is asymptotically valid for small imperfections. Cohen (1968) and

Hutchinson and Frauenthal (1969) have modi®ed this formula to account for the variation between the
assumed shape of the modal imperfection and the buckling modes calculated using nonlinear prebuckling
analysis and satisfying the speci®ed boundary conditions rigorously. The modi®ed Koiter formula is

�1ÿ qs�3=2 � �3=2�
�����������
ÿ3ab
p

�1ÿ �a=b��1ÿ qs�� n2

�� ��; b < 0; �51�

where a and b are the ®rst and second imperfection form factors. Notice that only negative values of the
second postbuckling coe�cient ``b'' imply the existence of a limit point and thus a decrease of the load
carrying capacity of the imperfect structure. Using ANILISA (Arbocz and Hol, 1990) for the axially

Fig. 9. Lowest symmetric buckling mode of the axially compressed stringer sti�ened shell AS-2 at knl
s � 1:89035 (n � 14).
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compressed stringer sti�ened shell AS-2, one obtains for the close modal approximation of the critical
buckling mode given by Eq. (48) the following values:

knl
c � 1:76862 �n � 14�; b � ÿ0:096261; a � 0:74404; b � 0:55102: �52�

For these values, the results given by Eq. (51) are plotted as the solid curve in Fig. 10.
In order to establish the range of validity of the asymptotic predictions, one must solve the nonlinear 2-

point boundary value problem given by Eqs. (40) and (41) for the assumed asymmetric imperfection

A0�x� � 0; A1�x� cosny � n2 sin2p
x
L

cos14y; A2�x� � 0: �53�

The results obtained are shown as the dotted curve in Fig. 10.
When comparing the two curves shown in Fig. 10, one must remember that KoiterÕs imperfection sen-

sitivity theory is asymptotically exact, that is, it yields accurate predictions for su�ciently small imperfec-
tions, whereby what is su�ciently small may vary from case to case. Further, one must recall that Eqs. (50)
and (51) are obtained via perturbation expansions (Cohen, 1968), where terms of O�nn� are neglected,
whereas in the nonlinear computational module COLLAPSE, presented in this article, terms up to order
�nn

2� are kept. Thus the predictions of COLLAPSE are more accurate, especially for larger values of n.

Fig. 10. Imperfection sensitivity of the stringer sti�ened shell AS-2 axial compression, nonlinear prebuckling, u � u0, v � w �
Mx � 0 W � tn2 sin�2px=L� cos�14y=R�, knl

c � 1:76862.
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A closer look at Fig. 10 reveals that in this case (as expected) the asymptotic predictions are higher, namely
at n2 � 0:4 by about 4%, whereas at n2 � 1:0 the di�erence is about 8%.

The shape imperfection considered in Eq. (53) represents the initial deviations of the shell midsurface
from the perfect shell con®guration and is a close approximation of the critical buckling mode shown in
Fig. 8. For comparison purposes, next the e�ect of the asymmetric imperfection

W � tn2 sin3p
x
L

cos14
y
R

�54�

is investigated. Notice that this modal imperfection represents a close approximation of the lowest sym-
metric buckling mode with n � 14 full waves in the circumferential direction shown in Fig. 9. Using
ANILISA one obtains the following values

knl
c � 1:89050�n � 14�; b � ÿ0:17433; a � 0:74404; b � 0:55102: �55�

For these values, the results given by Eq. (51) are plotted as the solid curve in Fig. 11. Notice that the
normalized axial load, de®ned as k=1:76862, for very small imperfections predicts higher critical loads than
the preceding imperfection model. However, for increasing imperfection amplitudes the current imper-
fection model results in somewhat higher imperfection sensitivity.

To establish the range of validity of the asymptotic predictions next the 2-point nonlinear value problem
of Eqs. (40) and (41) is solved using the following asymmetric imperfection

A0�x� � 0; A1�x� cosny � n2 sin3p
x
L

cos14y; A2�x� � 0: �56�

The results obtained are displayed as the dotted curves in Fig. 11. Once again, the asymptotic predictions
are somewhat higher than the nonlinear solutions.

4.3. Buckling loads of shells with boundary imperfections

Based on the results of the ¯atness survey of one of the end-rings used in the test setup of shell AS-2
shown in Fig. 4, let us assume that the ¯atness variation of the boundary support can be modeled by Eq.
(25). To trigger the critical buckling mode of the perfect AS-2 shell with boundary imperfections, initially it
is assumed that

at x � 0 ub � tu01 cos14y � tnb cos14y; �57a�

at x � L ub � tuL1 cos14y � tnb cos14y: �57b�
Notice that these expressions will trigger a response mode W, which is anti-symmetric with respect to

the mid-plane of the shell at x � L=2, a shape which corresponds to the critical buckling mode of the per-
fect AS-2 shell with SS-4 boundary conditions shown in Fig. 8. As can be seen from the results plotted in
Fig. 12, the anti-symmetric boundary imperfection (where u01 � uL1) has a very strong degrading e�ect on
the load carrying capacity of the axially compressed stringer sti�ened shell AS-2. A ¯atness variation of the
shape given by Eqs. (57) and an amplitude of one-tenth of the wall thickness �nb � 0:1; say) reduces the
buckling load of the perfect shell by about 60%.

Considering now another possible ¯atness variation, where at the upper and lower edges the boundary
imperfections are out of phase, i.e.

at x � 0 ub � tu01 cos14y � tnb cos14y; �58a�
at x � L ub � ÿtuL1 cos14y � ÿtnb cos14y; �58b�
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then these expressions trigger a response mode W, that is symmetric with respect to the mid-plane of the
shell at x � L=2. Notice that this mode shape corresponds to the lowest symmetric buckling mode of the
perfect AS-2 shell with SS-4 boundary conditions and n � 14 full waves in the circumferential direction (see
also Fig. 9). As can be seen in Fig. 12, this symmetric boundary imperfection (where u01 � ÿuL1) also has a
pronounced degrading e�ect on the load carrying capacity of the axially compressed stringer sti�ened shell
AS-2. Notice that as the corresponding perfect shell eigenvalue of knl

c � 1:89050 is rather high, for small
enough imperfections (nb < 0:01; say) the limit loads are higher than the critical buckling load of the perfect
AS-2 shell of knl

c � 1:76862. Still, a ¯atness variation of the shape given by Eqs. (58) and an amplitude of
one-tenth of the wall thickness (nb � 0:1; say) reduces the buckling load of the perfect shell by about 50%.

To verify these predictions, the two cases were rerun with the well-known nonlinear shell analysis code
STAGS-A from Almroth et al. (1971a). Thanks to extensive modi®cations and additions executed by
Brogan (1989) of the original source code with the current TU-Delft version of STAGS-A, it is possible to
calculate both the limit load and the bifurcation buckling load under very general elastic boundary

Fig. 11. Imperfection sensitivity of the stringer sti�ened shell AS-2 axial compression, nonlinear prebuckling, u � u0, v � w �
Mx � 0 W � tn2 sin�3px=L� cos�14y=R�, knl

c � 1:89050.
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conditions. A comparison of the buckling loads for the anti-symmetric case (where u01 � uL1) is shown in
Fig. 13. For the symmetric case (where u01 � ÿuL1), the comparison of results is shown in Fig. 14. In both
cases, the agreement between the results of COLLAPSE (Donnell type equations) and of STAGS-A
(Fl�ugge±Marlowe type equations) is very good. The minor di�erences seen are due to the di�erent shell
equations used.

Notice that in Fig. 14, for the symmetric case (where u01 � ÿuL1) for very small imperfections �nb < 0:01�
with STAGS-A no limit points are found. Also, during the STAGS-A calculations for the symmetric case
before reaching the limit point negative roots on the diagonal of the sti�ness matrix are detected. This
indicates the presence of bifurcation points along the nonlinear prebuckling path. Repeating the calcula-
tions, indeed it was found that for symmetric boundary imperfections (where u01 � ÿuL1) close to but
before reaching the limit points always bifurcation into a mode occurs, which is antisymmetric with respect
to the shell mid-plane at x � L=2. However, as can be seen from Fig. 15, for larger imperfections
�nb > 0:01�, the agreement between the results obtained by COLLAPSE (limit point calculations) and the
STAGS-A bifurcation loads is good.

Fig. 12. Imperfection sensitivity of the stringer sti�ened shell AS-2 for boundary imperfections ub�y� � tu1 cos14y, axial compression,

u � ub, v � w � Mx � 0.
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5. Conclusions

KoiterÕs general theory of elastic stability (1967) has greatly contributed to our understanding of the
sometimes perplexing stability behavior of thin-walled structures. With the advent of modern high-speed
computers, it became feasible to study those e�ects, which in KoiterÕs analytical solutions had to be ne-
glected. The use of nonlinear prebuckling analysis and rigorous satisfaction of the speci®ed boundary
conditions (Cohen, 1968; Hutchinson and Frauenthal, 1969; Arbocz and Hol, 1990) have greatly improved
the accuracy and the predictive power of KoiterÕs asymptotic approach.

Using Donnell-type anisotropic shell equations, a rigorous nonlinear solution has been presented for the
collapse behavior of imperfect, sti�ened, layered composite shells under combined axial compression, in-
ternal or external pressure and torsion. These nonlinear solutions make it possible to establish the range of
validity of KoiterÕs asymptotic formula used for the prediction of imperfection sensitivity of the buckling
load.

It has been shown that nonuniform, harmonically varying boundary imperfections can have severe
degrading e�ect on the load carrying capacity of axially compressed stringer sti�ened shells. It appears that
for proper correlation of experimental results and theoretical predictions, at least for stringer sti�ened
shells, the boundary imperfections must be included in the analysis.

Fig. 13. Comparison of buckling loads for anti-symmetric (u01 � uL1) boundary imperfections.
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It must be stressed that the work done with COLLAPSE so far has only demonstrated the importance of
accounting for the boundary imperfections, if one wants to achieve an accurate prediction of the load
carrying capacity of axially compressed cylindrical shells. It is felt that a systematic investigation of other
boundary imperfection models and the e�ect of nonlinear interaction with shape imperfections must be
carried out in order to get a better insight into the buckling behavior of imperfect shells. Especially, the
earlier work by Sabag et al. (1989), who solved Fl�uggeÕs linearized stability equations with membrane
prebuckling under nonuniform boundary conditions, should be rerun with the present nonlinear approach.
Also, the e�ect of other external loads such as pressure and torsion must be studied.

Finally, if by a probabilistic prediction of the buckling load one is talking about a probability of failure
of 10ÿ6, then the mechanical modeling of the buckling process must be very accurately done. This implies,
that in the future the experimentalist must not only measure the shape imperfections, which with modern
computer supported laser±theodolite systems (Megson and Hallack, 1992) is now feasible even for very
large structures, but he must also provide information about the ¯atness of the end supports and possibly
about the elastic restraint of the rotation of the shell edges, if an accurate prediction of the expected
buckling load is required.

Fig. 14. Comparison of buckling loads for symmetric (u01 � ÿuL1) boundary imperfections.
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Appendix A. Periodicity condition

If the solution is to satisfy the periodicity requirement, then, by de®nition,Z 2pR

0

v;y dy � 0 �A:1�

Fig. 15. Comparison of buckling loads for symmetric (u01 � ÿuL1� boundary imperfections (limit loads versus bifurcation loads).
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must hold, where

v;y � ey � �1=R�W ÿ �1=2�W ;2y ÿW ;y W ;y ; �A:2�

ey � A�12Nx � A�22Ny � A�26Nxy � B�21jx � B�22jy � B�26jxy ; �A:3�
Further, using the Airy stress function F

Nx � F ;yy ; Ny � F ;xx ; Nxy � ÿF ;xy ; �A:4�

jx � ÿW ;xx ; jy � ÿW ;yy ; jxy � ÿ2W ;xy : �A:5�
Introducing these expressions into Eq. (A.1) and substituting for W , W and F from Eqs. (6)±(8), one obtainsZ 2p

0

f ÿ A
�
12�k� n2f1 cosny � 4n2f2 cos2ny � n2f3 sinny � 4n2f4 sin2ny�

� A
�
22�ÿp � f 000 � f 001 cosny � f 002 cos2ny � f 003 sinny � f 004 sin2ny�

ÿ A
�
26�ÿsÿ nf 01 sinny ÿ 2nf 02 sin2ny � nf 03 cosny � 2nf 04 cos2ny�

ÿ �1=2��t=R��B�21�w000 � w001 cosny � w002 sinny� ÿ B
�
22n2�w1 cosny � w2 sinny�

� 2B
�
26n�ÿw01 sinny � w02 cosny�� � c�Wt � Wp � Wt � w0 � w1 cosny � w2 sinny�

ÿ �c=4��t=R�n2�w1�w1 � 2A1� � w2�w2 � 2A2� ÿ w2�w1h � 2A1� � w1�w2 � 2A2�i sin2ny

ÿ w1�w1h � 2A1� ÿ w2�w2 � 2A2�i cos2ny�gdy � 0: �A:6�
Carrying out the y-integration and introducing the nondimensional quantities de®ned earlier yields

fÿA
�
12kÿ A

�
22p � A

�
22f 000 � A

�
26sÿ B

�
21�1=2��t=R�w000 � c�Wt � Wp � Wt� � cw0

ÿ �c=4��t=R�n2�w1�w1 � 2A1� � w2�w2 � 2A2��g�2p� � 0:

Substituting for f 000 from Eq. (14) and regrouping one obtains

�ÿA
�
12k� cWt� � �ÿA

�
22p � cWp� � �A�26s� cWt� � ~C1x� ~C2 � 0:

Thus, if

Wt � A
�
12

c
k; Wp � A

�
22

c
p; Wt � ÿA

�
26

c
s;

~C1 � ~C2 � 0;

then the circumferential periodicity condition is satis®ed identically.
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